German Researchers Develop Fluoride-Based Battery

Lithium-free fluoride battery concept would allow for energy densities up to ten fold greater than current lithium-ion chemistries.

Published: 25-Oct-2011

KIT researchers have developed a new concept for rechargeable batteries. Based on a fluoride shuttle - the transfer of fluoride anions between the electrodes – it promises to enhance the storage capacity reached by lithium-ion batteries by several factors. Operational safety is also increased, as it can be done without lithium. The fluoride-ion battery is presented for the first time in the “Journal of Materials Chemistry” by Dr. Maximilian Fichtner and Dr. Munnangi Anji Reddy.

Lithium-ion batteries are applied widely, but their storage capacity is limited. In the future, battery systems of enhanced energy density will be needed for mobile applications in particular. Such batteries can store more energy at reduced weight. For this reason, KIT researchers are also conducting research into alternative systems. A completely new concept for secondary batteries based on metal fluorides was developed by Dr. Maximilian Fichtner, Head of the Energy Storage Systems Group, and Dr. Munnangi Anji Reddy at the KIT Institute of Nanotechnology (INT).

Metal fluorides may be applied as conversion materials in lithium-ion batteries. They also allow for lithium-free batteries with a fluoride-containing electrolyte, a metal anode, and metal fluoride cathode, which reach a much better storage capacity and possess improved safety properties. Instead of the lithium cation, the fluoride anion takes over charge transfer. At the cathode and anode, a metal fluoride is formed or reduced. “As several electrons per metal atom can be transferred, this concept allows to reach extraordinarily high energy densities – up to ten times as high as those of conventional lithium-ion batteries,” explains Dr. Maximilian Fichtner.

The KIT researchers are now working on the further development of material design and battery architecture in order to improve the initial capacity and cyclic stability of the fluoride-ion battery. Another challenge lies in the further development of the electrolyte: The solid electrolyte applied so far is suited for applications at elevated temperatures only. It is therefore aimed at finding a liquid electrolyte that is suited for use at room temperature.

Views :6422

<< PREVIOUSNEXT >>
RELATED NEWS ITEMS

First Toyota Prius went on sale in December 1997.

Program to recycle nickel metal hydride batteries will eventually expand from Japan to other Toyota markets.

Iranina President Mahmoud Ahmadinejad (left) with Bolivian President Evo Morales.

Stung by past Western exploitation of their resources, the two countries find areas of common interest.

Fiat 500 will be offered in a battery electric version in 2012

Chrysler Fiat 500 EV electric car will debut in 2012 in North America.

READER COMMENTS

blog comments powered by Disqus